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Abstract. We prove that for any self-conformal measures, without any separation
conditions, the multifractal formalism partially holds. The result follows by
establishing certain Gibbs properties for self-conformal measures.

1. Introduction
This paper is devoted to the study of the multifractal structure of self-conformal
measures. To state our the results, let us first give some notations and backgrounds.

One of the main objectives of multifractal analysis is to study the dimension
spectra and their relation with the Lq spectra for a given measure. Let ν be a
compactly supported Borel probability measure on Rd. For x ∈ Rd, the upper and
lower local dimensions of ν at x are defined by

d(ν, x) = lim sup
r→0+

log ν(B(x, r))
log r

, d(ν, x) = lim inf
r→0+

log ν(B(x, r))
log r

,

where B(x, r) stands for the closed ball of radius r centered at x. When d(ν, x) =
d(ν, x), the common value, denoted by d(ν, x), is called the local dimension of ν at
x. For α ≥ 0, define

Eν(α) = {x ∈ Rd : d(ν, x) = α}, fν(α) = dimH Eν(α),

where dimH denotes the Hausdorff dimension (see, e.g., [13] for a definition). The
Eν(α) are called the level sets of ν, and fν(α) the dimension spectra of ν. For each
n ≥ 1, let Dn be the set of cubes {[0, 2−n)d + α : α ∈ 2−nZd}. For q > 0, define

τn(ν, q) =
∑

Q∈Dn

(ν(Q))q. (1)
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2 D.-J. Feng

The Lq spectrum of ν is defined as

τ(ν, q) = lim
n→∞

log τn(ν, q)
−n log 2

, (2)

if the limit exists. In general, we use τ(ν, q) to denote the corresponding value by
taking the lower limit, and call it the lower Lq spectrum of ν. Moreover τ(ν, q) can
be defined over R by

τ(ν, q) = lim inf
r→0+

log (sup
∑

i ν(B(xi, r))q)
log r

,

where the supremum is taken over all the disjoint families {B(xi, r)}i of closed balls
with xi ∈ supp(ν). It is easily checked that τ(ν, q) is a concave function of q over
R.

The self-similar measures and self-conformal measures are typical multifractal
measures. To introduce some corresponding notations, let U ⊂ Rd be an open set.
A C1-map S : U → Rd is conformal if the differential S′(x) : Rd → Rd satisfies
|S′(x)y| = |S′(x)|·|y| 6= 0 for all x ∈ U and y ∈ Rd, y 6= 0. Furthermore, S : U → Rd

is contracting if there exists 0 < γ < 1 such that |S(x) − S(y)| ≤ γ · |x − y| for
all x, y ∈ U . We say that {Si : X → X}`

i=1 is a C1-conformal iterated function
system ( C1-conformal IFS) on a compact set X ⊂ Rd if each Si extends to an
injective contracting C1-conformal map Si : U → U on an open set U ⊃ X. Let
{Si}`

i=1 be a C1-conformal IFS on a compact set X ⊂ Rd. It is well-known, see [29],
that there is a unique non-empty compact set K ⊂ X such that K =

⋃`
i=1 Si(K).

Given a probability vector (p1, . . . , p`), there is a unique Borel probability measure
ν satisfying

ν =
∑̀
i=1

piν ◦ S−1
i . (3)

This measure is supported on K and it is called self-conformal. In particular, if the
maps Si are all similitudes, then ν is called self-similar.

We point out that for any self-conformal measure ν on Rd, the limit τ(ν, q) in
(2) always exists for any q > 0. This fact was first proved by Peres and Solomyak
[44] under an additional assumption that the generating IFS {Si}`

i=1 for ν satisfies
the bounded distortion property: There exists L ≥ 1 such that for every n ∈ N and
for every word u = u1 . . . un ∈ {1, . . . , `}n,

L−1 ≤ ‖S′u(x)‖
‖S′u(y)‖

≤ L, ∀x, y ∈ U, (4)

where Su = Su1 ◦ . . . ◦Sun
. We will show that this assumption can be removed (see

Corollary 4.5), and furthermore τ(ν, q) always takes values in R (see Lemma 2.4).
For a given measure, usually it is very hard or impossible to calculate the

corresponding dimension spectra directly. The celebrated heuristic principle known
as the multifractal formalism, which was first introduced by some physicists
[22, 25, 26], states that the dimension spectra fν(α) and the lower Lq-spectra
τ(ν, q) form a Legendre-transform pair, i.e.,

fν(α) = τ∗(α) := inf{αq − τ(ν, q) : q ∈ R}.
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Self-conformal measures and the multifractal formalism 3

For rigorous mathematical foundations of the multifractal formalism, we refer to
[6, 7, 41, 47, 49]. Although false in general, the multifractal formalism has been
verified for many natural measures, including, e.g., Gibbs measures of conformal
dynamical systems (discrete or continuous time) [24, 46, 4, 45], cookie-cutter
Cantor measures [9, 51], quasi-Bernoulli measures [7, 27], weak Gibbs measures
[21, 58]. Here for Gibbs measures of conformal dynamical systems, there is no
separation condition required for the systems. For such kind of systems, for
example, conformal repellers, one can obtain their symbolic representations via
Markov partitions, and then apply the classical thermodynamical formalism to
construct equilibrium measures supported on Eν(α) to estimate its dimension
directly (see [46] for details). In most of the literature, an additional bounded
distortion property similar to (4) is required for the systems to guarantee
the ergodicity and Gibbs property of equilibrium measures, as well as the
differentiability of Lq spectra. In a recent work [3], Barreira and Gelfert considered
the multifractal structure of Lyapunov exponents on non-conformal repellers and
obtained some related results without requiring the bounded distortion property.

We point out that the multifractal formalism has also been verified for some
typical fractal measures, for instance, self-similar measures and self-conformal
measures under some separation assumptions. In [8], Cawley and Mauldin verified
the multifractal formalism for self-similar measures under the strong separation
condition, in which τ(ν, q) is given explicitly by∑̀

i=1

pq
i ρ
−τ(ν,q)
i = 1,

where ρi is the contraction ratio of the similitude Si. An extension was given
to graph-directed constructions of measures by Edgar and Mauldin [11]. Later
Patzschke [43] and Fan and Lau [14] extended the result to self-conformal measures
satisfying the bounded distortion property and the well-known open set condition
(see [29]), where τ(ν, q) is proved to be an analytic function over R. Under
the same conditions, the self-conformal measures generated by countably many
contractive conformal maps were considered by Riedi and Mandelbrot [52], Maudin
and Urbański [37], Pollicott and Weiss [50]. The random self-similar measures
with the open set condition were considered in [35, 30, 12, 42, 1, 2]. In [32],
Lau and Ngai introduced a notion “weak separation condition” (WSC) which is
weaker than the open set condition and includes many interesting overlapping
IFS, such as the Bernoulli convolutions associated with Pisot numbers (see, e.g.,
[16] for details). They proved that the multifractal formalism still partially holds
for self-similar measures under the WSC. In recent years there have been a lot
of interest in the multifractal analysis for this kind of overlapping self-similar
measures, and many exceptional multifractal phenomena have been found (see,
e.g., [34, 31, 28, 15, 16, 17, 19, 21, 33, 20, 40, 54, 55, 56, 10, 57]).

It is a natural question whether or not the multifractal formalism still holds or
partially holds for any self-similar measures and self-conformal measures without
any separation conditions, i.e., whether or not the multifractal formalism is

Prepared using etds.cls



4 D.-J. Feng

generically (partially) valid for measures with self-similar properties. To our best
knowledge, so far there have been no known results for this question. The main
difficulty lies in the fact that there is no known effective method to analyze the local
fine structures for such overlapping measures. As a result, one can not expect to use
directly the thermodynamic formalism in dynamical systems or the large deviation
theory to construct a one-parameter family of equilibrium measures (corresponding
to a real or matrix-valued continuous function) supported on Eν(α) having the full
dimension in the classic way. Nevertheless, in the present paper we obtain the first
result for the question.

Theorem 1.1. Let ν be a self-conformal measure on Rd, without any separation
conditions. Then for any α = τ ′(ν, t) with t ≥ 1 (provided that τ(ν, ·) is
differentiable at t),

dimH Eν(α) = αt− τ(ν, t) = inf{αq − τ(ν, q) : q ∈ R}. (5)

Since τ(ν, q) is finite and concave on (0,∞), it is differentiable except for at
most countably many points q ∈ (0,∞). Hence there do exist α ≥ 0 such that the
multifractal formula (5) holds. The proof of Theorem 1.1 is based on the following
Gibbs properties of self-conformal measures.

Theorem 1.2. Let ν be an arbitrary self-conformal measure on Rd. Then for any
q > 0, there exist a Borel probability measure νq on Rd and a positive function h(r)
(which depends q) with limr→0

log h(r)
log(1/r) = 0 such that for q ≥ 1,

νq

(
B(x, r/(16

√
d))
)
≤ h(r)r−τ(ν,q)ν (B(x, r))q

, ∀x ∈ Rd, 0 < r < 1, (6)

and for 0 < q < 1,

νq

(
B(x, 16

√
dr)
)
≥ h(r)r−τ(ν,q)ν (B(x, r))q

, ∀x ∈ Rd, 0 < r < 1/4. (7)

In fact, Theorem 1.1 follows directly from the Gibbs property (6) and a
multifractal result about measures (see Proposition 2.1). We remark that in
Theorem 1.2 the positive function h(r) can be replaced by a positive constant
if the generating IFS for ν satisfies the bounded distortion property (4).

We point out that Theorem 1.1 and Theorem 1.2 can be extended to a broader
class of probability measures supported on self-conformal sets. To be more precisely,
let {Si}`

i=1 be a conformal IFS in Rd and let K be the corresponding self-conformal
set. We use Σ = {1, . . . , `}N to denote the one-sided full shift space over the
alphabet {1, . . . , `}. Consider the canonical projection π : Σ → K defined by

π(x) = lim
n→∞

Sx1 ◦ . . . ◦ Sxn
(0), x = (xi)∞i=1 ∈ Σ. (8)

Assume that µ is a Borel probability measure on Σ such that for some constant
C > 0,

µ([IJ ]) ≤ Cµ([I])µ([J ]) (9)

for any two words I = i1 . . . in and J = j1 . . . jm over {1, . . . `}, where [u1 . . . un]
denotes the cylinder set {x = (xi)∞i=1 ∈ Σ : xi = ui for 1 ≤ i ≤ n}. Then the
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Self-conformal measures and the multifractal formalism 5

measure ν = µ◦π−1, called the projection of µ under π, has the Gibbs property (6);
and Theorem 1.1 holds for this measure. Accordingly, if µ is a Borel probability
measure on Σ such that for some constant C ′ > 0,

µ([IJ ]) ≥ C ′µ([I])µ([J ]) (10)

for any two finite words I and J over {1, . . . `}, then the corresponding measure
ν = µ ◦ π−1 has the Gibbs property (7). For some details, see Remark 3.10 and
Theorem 4.6.

We do not know whether or not the result of Theorem 1.1 can be extended
to all t > 0 for general self-conformal measures. However this is true for a
class of self-conformal measures, for which the generating IFS satisfy the so-called
asymptotically weak separation condition (see Definition 5.1 and Theorem 5.7). For
example, consider the simplest family of IFS Φρ = {ρx, ρx + 1}, where 0 < ρ < 1.
Then Φρ satisfies the asymptotically weak separation condition when 1/ρ is a Pisot
number or Salem number (see Definition 5.2 and Proposition 5.3).

An interesting question arises that whether or not τ(ν, q) is always a differentiable
function of q on (0,∞) for a general self-similar or self-conformal measure ν. We
conjecture that it is true, at least for self-similar measures. For some self-similar
measures satisfying certain separation condition, this was proved to be true. To
be more precisely, let {Si(x) = ρx + di}`

i=1 be an IFS on R consisting of equi-
contractive similitudes, and K the corresponding self-similar set. Following Ngai
and Wang [39], say {Si}`

i=1 satisfies the finite type condition if the set
∞⋃

n=1

{
ρ−n(Su(0)− Sv(0)) : u, v ∈ {1, . . . , `}n

}
∩ [0,diam(K)]

is finite. For example, the IFS {ρx + di}`
i=1 satisfies the finite type condition if

1/ρ is a Pisot number and all di are integers (see, e.g. [32, 39]). The author
showed in [15] that if the IFS {ρx + di}`

i=1 satisfies the finite type condition, then
τ(ν, q) is differentiable over (0,∞) for the corresponding self-similar measure ν.
The result is based on the thermodynamic formalism for matrix-valued functions
established in [19]. Some extensions were given recently in [55, 10] for some
specific non-equi-contractive and high dimensional cases. We remark that even
under the finite type condition, τ(ν, q) may be non-differentiable for some q < 0
and it may lead to intervals in which the multifractal formalism does not hold (see
[16, 21, 20, 28, 33, 54, 55, 56]). In particular, Testud constructed some simple
class of self-similar measures on R of which the dimension spectra are very wide
and not concave [56].

By the way, we point out that any self-conformal measure ν should be exact
dimensional, i.e., the local dimensions d(ν, x) are equal to a constant for ν-a.e. x.
The statement was claimed a long time ago by Ledrappier, whilst a rigorous proof
of this fact was carried out in [18] by the author and Hu recently.

The paper is arranged in the following manner: in section 2, we present a
multifractal result for measures satisfying certain Gibbs property; in section 3 we
setup some inequalities for self-conformal measures; in section 4 we verify the Gibbs
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6 D.-J. Feng

properties for these measures, and prove Theorem 1.2 and Theorem 1.1; in section
5, we study C1-conformal IFSs which satisfy the asymptotically weak separation
condition.

2. A multifractal result for measures satisfying certain Gibbs property
In this section, we provide the following proposition, which extends a result of Ben
Nasr [5] about measures µ on full shift spaces satisfying (9). For the convenience of
the readers, we give a complete proof, the idea of which is essentially due to Brown,
Michon and Peyrière [7].

Proposition 2.1. Let ν be a compactly supported Borel probability measure on Rd,
and (a, b) an interval with a > 0. Assume that the Lq spectrum τ(q) := τ(ν, q) of ν

exists on (a, b). Furthermore assume that for any q ∈ (a, b), there exist a constant
t > 1 which is independent of r, a map h : R+ → R+ with limr→0

log h(r)
log r = 0 and

a Borel probability measure νq on Rd and r0 > 0 such that

νq(B(x, t−1r)) ≤ h(r) ν(B(x, r))q r−τ(q), ∀x ∈ Rd, 0 < r < r0. (11)

Then for any q ∈ (a, b) and νq almost all x ∈ Rd,

d(ν, x) ≥ τ ′(q+), d(ν, x) ≤ τ ′(q−). (12)

In particular when τ is differentiable at q, we have d(ν, x) = τ ′(q) for νq almost all
x ∈ Rd, and furthermore

dimH Eν(α) = τ∗(α) = αq − τ(q). (13)

for α = τ ′(q).

The above proposition is also related to a general result in [6]. To prove the
proposition, we need some lemmas. First we recall the following covering lemma.
For a proof one is referred to Mattila’s book [36, p. 30].

Lemma 2.2. (Besicovitch’s covering lemma). Let A be a bounded subset of Rd, and
let B be a family of closed balls such that each point of A is the center of some ball
of B. Then there are families B1, . . . ,Bc ⊂ B covering A, where c is a constant only
depending on d, such that each Bi is disjoint, that is,

A ⊂
c⋃

i=1

(∪Bi)

and B ∩B′ = ∅ for B,B′ ∈ Bi with B 6= B′, where ∪Bi =
⋃

B∈Bi
B.

The following lemma is obvious.

Lemma 2.3. Let q > 0. For any k ∈ N and non-negative numbers x1, . . . , xk,

1
k

(xq
1 + . . . + xq

k) ≤ (x1 + . . . + xk)q ≤ kq(xq
1 + . . . + xq

k). (14)
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Self-conformal measures and the multifractal formalism 7

Lemma 2.4. Let ν be a compact supported Borel probability measure on Rd. Then
for any q > 0,

−d ≤ τ(ν, q) ≤ dq. (15)

Proof. Take a large number R > 1 such that ν is supported on the ball B = B(0, R).
Then for any n ∈ N, there are at most (3 · 2nR)d many distinct Q ∈ Dn such that
Q ∩B 6= ∅. Note that for any q > 0,

τn(ν, q) =
∑

Q∈Dn

ν(Q)q =
∑

Q∈Dn: Q∩B 6=∅

ν(Q)q.

Thus by (14),

τn(ν, q) ≤ (3 · 2nR)d

 ∑
Q∈Dn: Q∩B 6=∅

ν(Q)

q

= (3 · 2nR)d

and

τn(ν, q) ≥ (3 · 2nR)−dq

 ∑
Q∈Dn: Q∩B 6=∅

ν(Q)

q

= (3 · 2nR)−dq.

Therefore the lower Lq spectrum τ(ν, q) := lim infn→∞
log τn(ν,q)
−n log 2 satisfies (15). 2

Lemma 2.5. Let ν be a compactly supported Borel probability measure on Rd,
m ∈ N and q > 0. Suppose that {Ei}i is a collection of Borel subsets of Rd

such that ν(
⋃

i Ei) = 1. Furthermore assume that there is N ∈ N such that each Ei

intersects at most N many elements in Dm and any Q ∈ Dm intersects at most N

many sets in {Ei}i. Then

N−(q+1)τm(ν, q) ≤
∑

i

ν(Ei)q ≤ Nq+1τm(ν, q).

Proof. In the following we only prove that
∑

i ν(Ei)q ≤ Nq+1τm(ν, q), the other
inequality τm(ν, q) ≤ Nq+1

∑
i ν(Ei)q can be proved symmetrically. By Lemma

2.3, we have

∑
i

ν(Ei)q ≤
∑

i

 ∑
Q∈Dm: Q∩Ei 6=∅

ν(Q)

q

≤
∑

i

Nq
∑

Q∈Dm: Q∩Ei 6=∅

ν(Q)q

≤ Nq
∑

Q∈Dm

#{i : Ei ∩Q 6= ∅}ν(Q)q ≤ Nq+1τm(ν, q),

as desired. 2

Lemma 2.6. Let ν be a compactly supported Borel probability measure on Rd. Let
q > 0, t > 1 and n ∈ N. Suppose that {B(xi, t

−12−n)}i is a family of disjoint balls
in Rd. Then ∑

i

ν(B(xi, 2−n))q ≤ 1
γd

3dq(5t)dτn(ν, q),

where γd denotes the volume of the unit ball in Rd.
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8 D.-J. Feng

Proof. Denote Bi = B(xi, 2−n). It is clear that each Bi intersects at most 2d many
cubes in Dn. Conversely, since the family {B(xi, t

−12−n)}i is disjoint, each cube
in Dn intersects at most (5t)d

γd
many balls in {Bi}i. To see it, suppose a cube Q

in Dn intersects Bi1 , . . . , Bik
. Then 5Q, the cube which has side 5 · 2−n and has

the same center as Q, contains Bi1 , . . . , Bik
. Hence 5Q contains the disjoint balls

B
(
xij

, t−12−n
)
, j = 1, . . . , k. It follows k ≤ (5t)d

γd
by comparing the volumes of 5Q

and these disjoint balls. Therefore

∑
i

ν(Bi)q ≤
∑

i

 ∑
Q∈Dn,Q∩Bi 6=∅

ν(Q)

q

≤
∑

i

3dq
∑

Q∈Dn,Q∩Bi 6=∅

ν(Q)q

≤ 3dq
∑

Q∈Dn

 ∑
i: Bi∩Q6=∅

1

 ν(Q)q ≤ 3dq(5t)d

γd
τn(ν, q),

where we used (14) in the second inequality. This finishes the proof. 2

Proof of Proposition 2.1. Let q ∈ (a, b). We divide the proof into three smaller
steps.

Step 1. d(ν, x) ≥ τ ′(q+) for νq almost all x ∈ Rd. It is sufficient to prove that
for each γ > 0, d(ν, x) ≥ τ ′(q+)− γ for νq almost all x ∈ Rd . To see it, fix γ > 0
and define

Fn =
{

x ∈ Rd : ν(B(x, 2−n)) ≥ 2−n(τ ′(q+)−γ)
}

, n ∈ N.

We need to estimate νq(Fn) for large n. Since ν is compactly supported, Fn is
bounded for each n. Set B = {B(x, t−12−n) : x ∈ Fn}, where t is the constant in
(11). By Besicovitch’s covering lemma, there exist families B1, . . . ,Bc ⊂ B covering
Fn, where c only depends on d, such that the balls in each Bj are disjoint. Take
an j such that νq(∪Bj) ≥ 1

cνq(Fn). For convenience, write Bj = {B(xi, t
−12−n)}i.

Assume n is large enough such that t−12−n < r0. Then for any u > 0,

νq(Fn) ≤ cνq(∪Bj) = c
∑

i

νq

(
B(xi, t

−12−n)
)

≤ ch(2−n)2nτ(q)
∑

i

ν
(
B(xi, 2−n)

)q
≤ ch(2−n)2nτ(q)

∑
i

ν
(
B(xi, 2−n)

)q+u
ν
(
B(xi, 2−n)

)−u

≤ ch(2−n)2n(τ(q)+uτ ′(q+)−uγ)
∑

i

ν
(
B(xi, 2−n)

)q+u
.

By Lemma 2.6,

νq(Fn) ≤ c̃h(2−n)2n(τ(q)+uτ ′(q+)−uγ)τn(ν, q + u), (16)

where c̃ =
c3dq(5t)d

γd
. Choose a small u > 0 such that q + u ∈ (a, b) and

τ(q + u)− τ(q)
u

≥ τ ′(q)− γ

4
.
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Self-conformal measures and the multifractal formalism 9

Then choose a large integer N such that for n > N ,

log τn(ν, q + u)
−n log 2

≥ τ(q + u)− uγ

4
, c̃h(2−n) ≤ 2uγn/4.

By (16) and a direct check, we have νq(Fn) < 2−uγn/4 for n > N . Since νq(Fn)
converges to 0 exponentially, we have νq(limFn) = 0, where limFn =

⋂∞
k=1

⋃∞
n=k Fn.

However the set {x : d(ν, x) < τ ′(q+)− γ} is contained in limFn. Hence

νq{x ∈ Rd : d(ν, x) < τ ′(q+)− γ} = 0.

That is, d(ν, x) ≥ τ ′(q+)− γ for νq almost all x ∈ Rd.
Step 2. d(ν, x) ≤ τ ′(q−) for νq almost all x ∈ Rd. The statement is proved in

a way similar to that in Step 1. In fact, we only need to prove that for any γ > 0,
d(ν, x) ≤ τ ′(q−) + γ for νq almost all x ∈ Rd. Fix γ > 0 and define

Gn =
{

x ∈ supp(ν) : ν(B(x, 2−n)) ≤ 2−n(τ ′(q−)+γ)
}

, n ∈ N.

Similarly, by Bescovitch’s covering lemma, we can find a family of disjoint balls
{B(yi, t

−12−n)}i with yi ∈ Gn, such that νq(Gn) ≤ cνq

(⋃
i B(yi, t

−12−n)
)
, where

c is a constant that only depends on d. Assume that n is large enough such that
t−12−n < r0. Then for 0 < u < q,

νq(Gn) ≤ c
∑

i

νq

(
B(yi, t

−12−n)
)
≤ ch(2−n)2nτ(q)

∑
i

ν
(
B(yi, 2−n)

)q
≤ ch(2−n)2nτ(q)

∑
i

ν
(
B(yi, 2−n)

)q−u
ν
(
B(yi, 2−n)

)u
≤ ch(2−n)2n(τ(q)−uτ ′(q−)−uγ)

∑
i

ν
(
B(yi, 2−n)

)q−u

≤ c̃h(2−n)2n(τ(q)−uτ ′(q−)−uγ)τn(ν, q − u). (17)

Similarly, select a sufficient small u > 0 such that q − u ∈ (a, b) and

τ(q)− τ(q − u)
u

≤ τ ′(q−) +
γ

4
.

Then choose a large integer N such that for n > N ,

log τn(ν, q − u)
−n log 2

≥ τ(q − u)− uγ

4
, c̃h(2−n) ≤ 2uγn/4.

By (17) and a direct check, we have νq(Gn) < 2−uγn/4 for n > N . Thus
νq(limGn) = 0. However the set {x : d(ν, x) > τ ′(q−) + γ} is contained in
limGn. Hence d(ν, x) ≤ τ ′(q−) + γ for νq almost all x ∈ Rd.

Step 3. When τ is differentiable at some q > 0, d(ν, x) = τ ′(q) for νq almost all
x ∈ Rd. Furthermore dimH Eν(α) = τ∗(α) = αq−τ(q) for α = τ ′(q). The first part
of the statement follows directly from Step 1-2. Therefore we have νq(Eν(α)) = 1.
To see the second part, by (11) we have d(νq, x) ≥ qd(ν, x)− τ(q) for each x ∈ Rd.
Thus d(νq, x) ≥ qα − τ(q) for νq almost all x ∈ Rd. Since νq(Eν(α)) = 1, by the
Billingsley Theorem (c.f., [36, Theorem 6.9]), we have

dimH Eν(α) ≥ qα− τ(q).
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Anyway the upper bound dimH Eν(α) ≤ qα− τ(q) is generic whenever Eν(α) 6= ∅
(see, e.g., Theorem 4.1 of [32]). Thus dimH Eν(α) = qα − τ(q) = τ∗(α). This
finishes the proof of the proposition. 2

3. Some inequalities about self-conformal measures
In this section we prove the following inequalities about the self-conformal measures,
which will be used in our proof of Theorem 1.2 about the Gibbs properties of self-
conformal measures.

Proposition 3.1. Let ν be a self-conformal measure on Rd. Then
(i) For any q ≥ 1, there exists a sequence (cn) of positive numbers such that

limn→∞
log cn

n = 0 and, for any m,n ∈ N and Q̃ ∈ Dn,∑
Q∈Dm+n: Q⊂Q̃

ν(Q)q ≤ cnτm(ν, q)
∑

B̃∈Dn: B̃∼Q̃

ν
(
B̃
)q

, (18)

where B̃ ∼ Q̃ means that the closures of B̃ and Q̃ intersect.
(ii) For any 0 < q < 1, there exists a sequence (cn) of positive numbers such that

limn→∞
log cn

n = 0 and, for any m,n ∈ N and Q̃ ∈ Dn,

∑
B̃∈Dn: B̃∼Q̃

 ∑
Q∈Dm+n: Q⊂B̃

ν(Q)q

 ≥ cnτm(ν, q)ν
(
Q̃
)q

. (19)

We point out that the above proposition was first proved by Peres and Solomyak
[44, pp 1609-1612] under an additional assumption that the generating IFS for ν

satisfies the bounded distortion property (4). Indeed, under that assumption, Peres
and Solomyak obtained a slight stronger result that the sequence (cn) in Proposition
3.1 can be replaced by a uniform constant, and they used these inequalities to show
the existence of the limit τ(ν, q) in (2).

Let {Si}`
i=1 be a C1-conformal IFS on a compact set X ⊂ Rd. Assume that

each Si extends to an injective contracting C1-conformal map Si : U → U on an
open set U ⊃ X. Denote by K the corresponding self-conformal set. Let ν be the
self-conformal measure satisfying (3). Let A = {1, . . . , `}. Denote A∗ =

⋃
n≥1 An.

For u = u1 . . . uk, we write Su = Su1 ◦ · · ·Suk
, pu = pu1 · · · puk

and Ku = Su(K); in
particular we let ũ denote the word obtained by dropping the last letter of u. For
n ∈ N, denote

Wn :=
{
u ∈ A∗ : diam(Ku) ≤ 2−n,diam(Kũ) > 2−n

}
. (20)

To prove Proposition 3.1, we need the following lemma proved by Peres and
Solomyak.

Lemma 3.2. (Peres and Solomyak). Let ν be a self-conformal measure on Rd.
Then
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(i) For any q ≥ 1, there exists C > 0 such that for any m,n ∈ N and Q̃ ∈ Dn,∑
Q∈Dm+n: Q⊂Q̃

ν(Q)q ≤ C max
u∈Wn

∑
Q∈Dm+n

ν(S−1
u (Q))q

∑
B̃∈Dn: B̃∼Q̃

ν
(
B̃
)q

, (21)

(ii) For any 0 < q < 1, there exists C > 0 such that for any m,n ∈ N and Q̃ ∈ Dn,

∑
B̃∈Dn: B̃∼Q̃

 ∑
Q∈Dm+n: Q⊂B̃

ν(Q)q

 ≥ Cν
(
Q̃
)q

min
u∈Wn

∑
Q∈Dm+n

ν(S−1
u (Q))q.

(22)

We remark that the above lemma was proved implicitly in the proof of [44,
Thereom 1.1], depending only on the convexity of xq (when q ≥ 1); the concavity
of xq (when 0 < q < 1) and the self-similar relation:

ν =
∑

u∈Wn

pu ν ◦ S−1
u , for all n ∈ N. (23)

One can check that Proposition 3.1 follows directly from Lemma 3.2 and the
following proposition:

Proposition 3.3. There exists β > 0 such that for any ε > 0, there exists C(ε) > 0
such that for all q > 0, m,n ∈ N, and all u ∈ Wn,(
C(ε)(1 + ε)βn

)−(q+1)
τm(ν, q) ≤

∑
Q∈Dm+n

ν(S−1
u Q)q ≤

(
C(ε)(1 + ε)βn

)q+1
τm(ν, q).

In the remaining part of this section, we will provide a detailed proof of the above
proposition. We remark that in Proposition 3.3 the measure ν can be replaced by
any probability measures supported on K. Furthermore if the bounded distortion
assumption is fulfilled, then there is a constant C > 0 (depending on q) such that
C−1τm(ν, q) ≤ ν(S−1

u Q)q ≤ Cτm(ν, q), as proved by Peres and Solomyak.
To prove Proposition 3.3, we first prove the following elementary result.

Lemma 3.4. For any c > 1, there exists δ > 0 such that

c−1|S′i(x)| · |x− y| ≤ |Si(x)− Si(y)| ≤ c|S′i(x)| · |x− y| (24)

for all 1 ≤ i ≤ `, x ∈ X, y ∈ U with |x− y| ≤ δ.

Proof. Without loss of generality we show (24) for the case i = 1. Denote
S = S1. Assume the result is false. Then there exists c > 1, and two sequences
(xn) ⊂ X, (yn) ⊂ U such that xn 6= yn, limn→∞(xn − yn) = 0 and

|S(xn)−S(yn)| ≥ c|S′(xn)| · |xn−yn| or |S(xn)−S(yn)| ≤ c−1|S′(xn)| · |xn−yn|.
(25)

Since X is compact, without lost of generality, we assume that limn→∞ xn = x =
limn→∞ yn. Write S = (f1, f2, . . . , fd)t. Then each component fj of S is a C1 real
valued function defined on U . Choose a small ε > 0 such that

Bε(X) := {z ∈ Rd : |z − x| ≤ ε for some x ∈ X} ⊂ U.
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12 D.-J. Feng

Take N ∈ N such that |xn − yn| < ε for n ≥ N . By the mean value theorem, for
each n ≥ N and 1 ≤ j ≤ d, there exists zn,j on the segment Lxn,yn

connecting xn

and yn such that

fj(xn)− fj(yn) = ∇fj(zn,j) · (xn − yn),

where∇fj denote the gradient of fj . Therefore |S(xn)−S(yn)| = |Mn(xn−yn)| with
Mn := (∇f1(zn,1), . . . ,∇fd(zn,d))t. Since S is C1, Mn turns to S′(x) as n → ∞.
Note that S′(x) is the product of a positive scalar and an orthogonal matrix, we
have limn→∞

|Mn(xn−yn)|
|xn−yn| = |S′(x)|, leading to a contradiction with (25). 2

Take ε0 > 0 such that Bε0(X) ⊂ U . Then we have the following result concerning
with the distortion property of the IFS {Si}`

i=1.

Lemma 3.5. For any c > 1, there exists D1 > 0 such that for any u ∈ {1, . . . , `}n,
x ∈ X and y ∈ Bε0(X), we have

D−1
1 c−n|S′u(x)| · |x− y| ≤ |Su(x)− Su(y)| ≤ D1c

n|S′u(x)| · |x− y|. (26)

Proof. Since Si : U → U (i = 1, . . . , `) are contractive, there exists 0 < γ < 1 such
that for all 1 ≤ i ≤ `,

|Si(z1)− Si(z2)| ≤ γ|z1 − z2|, ∀z1, z2 ∈ U. (27)

Denote a = inf{|S′i(z)| : z ∈ X, 1 ≤ i ≤ `} and b = sup{|S′i(z)| : z ∈ X, 1 ≤ i ≤
`}. Then 0 < a ≤ b ≤ γ < 1.

To prove the lemma, we may assume without loss of generality that 1 < c < 1/b.
By Lemma 3.4, there exists δ > 0 (depending on c), such that for any i = 1, . . . , `,
z1 ∈ X, z2 ∈ U with |z1 − z2| ≤ δ, we have

c−1|S′i(z1)| · |z1 − z2| ≤ |Si(z1)− Si(z2)| ≤ c|S′i(z1)| · |z1 − z2| ≤ δ. (28)

Choose a large positive integer N such that γN · diam(Bε0(X)) < δ. Denote

η1 = inf
{
|Sv(z1)− Sv(z2)|
|S′v(z1)| · |z1 − z2|

: |v| ≤ N, z1 ∈ X, z2 ∈ Bε0(X) with |z1 − z2| ≥ δ

}
and

η2 = sup
{
|Sv(z1)− Sv(z2)|
|S′v(z1)| · |z1 − z2|

: |v| ≤ N, z1 ∈ X, z2 ∈ Bε0(X) with |z1 − z2| ≥ δ

}
.

A compactness argument, together with the fact that Si’s are injective on U , shows
that 0 < η1 ≤ η2 < ∞.

Now let u = u1 . . . un ∈ {1, . . . , `}n, x ∈ X and y ∈ Bε0(X). We estimate
|Su(x) − Su(y)| in the following three different possible cases respectively: (i)
|x− y| < δ; (ii) |x− y| ≥ δ and n ≤ N ; (iii)|x− y| ≥ δ and n > N .

If (i) occurs, then using (28) repeatedly, we have

c−n|S′u(x)| · |x− y| ≤ |Su(x)− Su(y)| ≤ cn|S′u(x)| · |x− y|. (29)

Meanwhile if (ii) occurs, then by the definition of η1, η2 we have

η1|S′u(x)| · |x− y| ≤ |Su(x)− Su(y)| ≤ η2|S′u(x)| · |x− y|. (30)
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In the end we assume that (iii) occurs. Since |x− y| ≤ diam(Bε0(X)), we have

|Sun−N+1...un(x)− Sun−N+1...un(y)| ≤ γNdiam(Bε0(X)) ≤ δ.

Therefore by using (28) repeatedly, we have

c−(n−N)t|S′u1...un−N
(z)| ≤ |Su(x)− Su(y)| ≤ cn−N t|S′u1...un−N

(z)|, (31)

where z := Sun−N+1...un(x) and t := |Sun−N+1...un(x) − Sun−N+1...un(y)|. By the
definition of η1, η2, we have aNη1|x− y| ≤ t ≤ bNη2|x− y|. Furthermore

|S′u(x)|/|S′u1...un−N
(z)| = |S′un−N+1...un

(x)| ∈ [aN , bN ].

Applying these estimates in (31) yields

c−(n−N)(a/b)Nη1|S′u(x)| · |x− y| ≤ |Su(x)−Su(y)| ≤ cn−N (b/a)Nη2|S′u(x)| · |x− y|.
(32)

Combining the estimates (29), (30) and (32) yields the desired result. 2

As a corollary of the above result, we have

Corollary 3.6. For any c > 1, there exists D2 > 0 such that for any u ∈
{1, . . . , `}n and x ∈ K,

D−1
2 c−n|S′u(x)| ≤ diam(Su(K)) ≤ D2c

n|S′u(x)|.

Proof. Let c > 1 be given and let D1 > 0 be the constant in Lemma 3.5. Fix
x ∈ K ⊂ X. Take y ∈ K such that diam(Su(K)) ≤ 2|Su(x) − Su(y)|. By Lemma
3.5,

|Su(x)− Su(y)| ≤ D1c
n|S′u(x)| · |x− y| ≤ D1c

n|S′u(x)|diam(K).

Hence we have diam(Su(K)) ≤ 2D1c
n|S′u(x)|diam(K). To see the other inequality,

choose z ∈ K such that diam(K) ≤ 2|x− z|. Again by Lemma 3.5, we have

diam(Su(K)) ≥ |Su(x)− Su(z)| ≥ D−1
1 c−n|S′u(x)| · |x− z|

≥ 2−1D−1
1 c−n|S′u(x)|diam(K).

This finishes the proof of the corollary. 2

Lemma 3.7. There exist α1, α2 > 0 such that for any n ∈ N and u ∈ Wn, we have
(i) |u| ≤ α1n; (ii) diam(Ku) ≥ α22−n.

Proof. Let γ be defined as in (27). Then 2−n ≤ diam(Kũ) ≤ γ|u|−1diam(K). Hence
|u| ≤ 1 + n log 2

log(1/γ) + log diam(K)
log γ . Thus (i) follows by setting α1 = 1 + log 2

log(1/γ) +
| log diam(K)|

| log γ| . To see (ii), set

α2 = inf
{

Si(x)− Si(y)|
|x− y|

: x, y ∈ K, x 6= y, 1 ≤ i ≤ `

}
.

A compactness argument shows that α2 > 0. Hence diam(Ku) ≥ α2diam(Kũ) ≥
α22−n. 2
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14 D.-J. Feng

Proposition 3.8. There exists a constant β1 > 0 such that for any c > 1, there
exists D3 > 0 (depending on c) such that for any n, m ∈ N, Q ∈ Dm+n and u ∈ Wn,
if S−1

u (Q) ∩K 6= ∅, then
(i) diam(S−1

u (Q) ∩Bε0(X)) ≤ D3c
β1n2−m.

(ii) The set S−1
u (Q∗)∩Bε0(X) contains a ball of radius D−1

3 c−β1n2−m, where Q∗

denotes the cube of side 2−m−n+1 with the same center as Q.

Proof. Let x ∈ S−1
u (Q) ∩K and y ∈ Bε0(X). Then by Lemma 3.5,

D−1
1 c−|u||S′u(x)| · |x− y| ≤ |Su(x)− Su(y)| ≤ diam(Q) ≤

√
d 2−m−n.

By Corollary 3.6, we have |S′u(x)| ≥ D−1
2 c−|u|diam(Ku). Combining these

inequalities we have

|x− y| ≤ D1D2 c2|u|
√

d 2−m−n(diam(Ku))−1

≤ (α1)−1
√

d D1D2c
2α1n 2−m, ( by Lemma 3.7)

from which (i) follows.
To see (ii), let r := ε0(D1D2)−1c−2α1n2−m. Let z ∈ Br(x) ⊂ Bε0(X). Then by

Lemma 3.5, Corollary 3.6 and Lemma 3.7, we have

|Su(x)− Su(z)| ≤ D1c
|u||S′(x)| · |x− z| ≤ D1D2c

2|u|diam(Ku)r

≤ D1D2c
2α1n2−nr ≤ 2−m−n.

Since Su(x) ∈ Q, we have Su(z) ∈ Q∗, i.e., z ∈ S−1
u (Q∗). Since z is arbitrarily

taken from Br(x), we deduce that S−1
u (Q∗) ∩ Bε0(X) contains the ball Br(x), as

desired. 2

Applying the above proposition together with a simple geometric argument we
obtain directly

Corollary 3.9. There exists a constant β2 > 0 such that for any c > 1, there
exists D4 > 0 (depending on c) such that for any n, m ∈ N, and u ∈ Wn, if we
denote

F := {S−1
u (Q) ∩Bε0(X) : Q ∈ Dm+n, S−1

u (Q) ∩K 6= ∅},

then (i) each E ∈ F intersects at most D4c
β2n cubes in Dm; (ii) each cubes in Dm

intersects at most D4c
β2n sets in F .

Proof of Proposition 3.3. By Corollary 3.9 and Lemma 2.5, for any q > 0 we have

(D4c
β2n)−(q+1)τm(ν, q) ≤

∑
Q∈Dm+n

ν(S−1
u Q)q ≤ (D4c

β2n)q+1τm(ν, q),

where we have used∑
Q∈Dm+n

ν(S−1
u Q)q =

∑
Q∈Dm+n: S−1

u Q∩K 6=∅

ν(S−1
u Q ∩Bε0(X))q.

This proves the proposition. 2
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Remark 3.10. Proposition 3.1 hold for a broader class of probability measures on
self-conformal sets rather than the strict self-conformal measures. Indeed, let µ

be a Borel probability measure on the one-sided full shift space Σ = {1, . . . , `}N.
Assume that µ satisfies the inequality (9), and let ν = µ ◦ π−1 be the projection
of µ on Rd by a canonical projection π generated by a conformal IFS {Si}`

i=1 on
Rd (see (8) for the definition). Then it is not hard to show that for any Borel set
E ⊂ Rd,

ν(E) ≤ C
∑
u∈G

µ([u])ν(S−1
u (E)), (33)

where G is an arbitrary finite set of words over {1, . . . `} such that Σ =
⋃

u∈G[u].
Then one can use the above inequality, instead of the strict self-similar relation (3),
to modify the proof of Peres and Solomyak slightly to obtain (21). It together with
Proposition 3.3, which is valid for all probability measures supported on K rather
than ν, yields (18). Similarly if µ satisfies the inequality (10), then for any Borel
set E ⊂ Rd,

ν(E) ≥ C ′
∑
u∈G

µ([u])ν(S−1
u (E)), (34)

where G is an arbitrary finite set of words over {1, . . . `} such that {[u], u ∈ G} is a
partition of Σ. Then one can use it to modify the proof of Peres and Solomyak to
obtain (22). It together with Proposition 3.3 yields (19).

4. Gibbs properties of self-conformal measures
In this section we set up the Gibbs properties of self-conformal measures. We first
present some elementary results.

Lemma 4.1. Assume that (an), (cn) are two sequences of positive numbers
satisfying limn→∞

1
n log cn = 0. Then we have the following statements.

(i) If an+m ≤ cnanam for all m,n ∈ N, then the limit a = limn→∞
log an

n exists
with a ∈ [−∞,∞).

(ii) If an+m ≥ cnanam for all m,n ∈ N, then the limit a = limn→∞
log an

n exists
with a ∈ (−∞,∞].

Proof. We only prove (i), whilst (ii) can be proved in a similar way. Fix ` ∈ N.
Then for any k ∈ N and 0 ≤ r < `,

ak`+r ≤ (c`a`)kar.

Hence
log ak`+r

k` + r
≤ k(log c` + log a`)

k` + r
+

log ar

k` + r
.

Letting k ↑ ∞, we have

lim sup
n→∞

log an

n
≤ log c` + log a`

`
< ∞.

Taking ` ↑ ∞, we have lim sup
n→∞

log an

n
≤ lim inf

`→∞

log a`

`
. This finishes the proof. 2

Prepared using etds.cls



16 D.-J. Feng

Lemma 4.2. Assume that (an) is a sequence of positive numbers with
limn→∞

1
n log an = a ∈ R. Then for any ε > 0, there exists a monotone decreasing

sequence (tn) of positive numbers such that t1 = ε, limn→∞ tn = 0 and

∞∑
n=1

anbne−na = ∞,

where bn = et1+...+tn .

Proof. We construct (tn) by induction. Define t1 = ε. Assume that t1, . . . , tn have
been defined well. Set bn = et1+...+tn . Then define

tn+1 =
{

tn

2 , if anbne−na ≥ 1,

tn, otherwise.

It is readily easy to see that the sequence (tn) satisfies the desired properties. 2

The key results in this section are Proposition 4.3 and Proposition 4.4. Our
proofs are inspired by Michon and Peyrière’s construction of Gibbs measures for
homogeneous trees (see [38, 48]) and Testud’s extension for measures satisfying
(9) (see [56]).

Proposition 4.3. Let ν be a compactly supported Borel probability measure on Rd.
Given q > 0, assume that there is a sequence (cn) of positive numbers such that
limn→∞

log cn

n = 0 and, for any n, m ∈ N, any Q̃ ∈ Dn,∑
Q∈Dn+m: Q⊂Q̃

ν(Q)q ≤ cnτm(ν, q)
∑

B̃∈Dn: B̃∼Q̃

ν
(
B̃
)q

, (35)

where B̃ ∼ Q̃ means that the closures of B̃ and Q̃ intersect. Then the limit
τ(q) = τ(ν, q) in (2) exists. Furthermore, there exists a Borel probability measure
νq on Rd such that for any n ∈ N and Q̃ ∈ Dn,

νq

(
int
(
Q̃
))

≤ cn2nτ(q)
∑

B̃∈Dn: B̃∼Q̃

ν
(
B̃
)q

, (36)

where int
(
Q̃
)

denotes the interior of Q̃. Moreover, for any x ∈ Rd and 0 < r < 1,

νq

(
B(x, t−1r)

)
≤ h(r)r−τ(q)ν (B(x, r))q

, (37)

where t = 1
16
√

d
and h(r) = 6d4|τ(q)|max{cn : n ≤ log2(8

√
d/r)}.

Proof. Observe that for any B̃ ∈ Dn, B̃ ∼ Q̃ for at most 3d many distinct Q̃ ∈ Dn.
Summing over Q̃ ∈ Dn in (35) yields

τm+n(ν, q) ≤ 3qcnτn(ν, q)τm(ν, q).

By Lemma 4.1, τ(q) = τ(ν, q) exists with τ(q) ∈ (−∞,∞]. By Lemma 2.4,
τ(q) < ∞.
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Take a large positive number R such that ν is supported in the closed ball
B(0, R). In the following, for each ε > 0 we construct a Borel probability measure
µε supported on B(0, R +

√
d). By Lemma 4.2, we can construct a decreasing

sequence (tε,n)∞n=1 of positive numbers such that tε,1 = ε, limn→∞ tε,n = 0, and

∞∑
n=1

bε,n2nτ(q)τn(ν, q) = ∞, (38)

where bε,n = etε,1+...+tε,n . It is clear that bε,n ≤ eεn and bε,n+m ≤ bε,nbε,m for all
m,n. For s ∈ (−∞, τ(q)], define

Zε(s) =
∞∑

n=1

bε,n2nsτn(ν, q).

By (38), Zε(s) < ∞ for s < τ(q), and Zε(τ(q)) = lim
s↑τ(q)

Zε(s) = ∞.

Let s < τ(q). Define φε,s : Rd → [0,∞] by

φε,s(x) =
∞∑

n=1

bε,n2n(s+d)ν
(
Q̃n(x)

)q

,

where Q̃n(x) denotes the cube in Dn which contains x. It is clear that the function
φε,s is Borel measurable. A direct calculation shows that∫

Rd

φε,s(x) dx = Zε(s).

Thus φε,s ∈ L1(Rd). Define a measure µε,s on Rd by

µε,s(E) =
1

Zε(s)

∫
E

φε,s(x) dx for Borel E ⊂ Rd.

Then µε,s is a Borel probability measure supported on B(0, R +
√

d).
For any n ∈ N and any Q̃ ∈ Dn, let Q̃k (1 ≤ k ≤ n) denotes the cube in Dk that

contains Q̃. Then a direct check shows

µε,s(Q̃) = Zε(s)−1

∫
Q̃

φε,s(x) dx = (I) + (II),

where

(I) := Zε(s)−12−nd

(
n∑

k=1

bε,k2k(s+d)ν
(
Q̃k

)q
)

and

(II) := Zε(s)−1
∞∑

m=1

bε,n+m2(n+m)s
∑

Q∈Dn+m: Q⊂Q̃

ν(Q)q.

Using bε,n+m ≤ bε,nbε,m and (35), we have

(II) ≤ cnbε,n2ns
∑

B̃∈Dn: B̃∼Q̃

ν
(
B̃
)q

. (39)
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Therefore

µε,s

(
Q̃
)
≤ Zε(s)−12−nd

(
n∑

k=1

bε,k2k(s+d)ν
(
Q̃k

)q
)

+ cnbε,n2ns
∑

B̃∈Dn: B̃∼Q̃

ν
(
B̃
)q

.

(40)
Let µε be a limit point of (µε,s) in the weak-star topology as s ↑ τ(q). By (40)

and using the fact lim
s↑τ(q)

Zε(s) = ∞, we have

µε

(
int
(
Q̃
))

≤ lim sup
s↑τ(q)

µε,s

(
Q̃
)
≤ cnbε,n2nτ(q)

∑
B̃∈Dn: B̃∼Q̃

ν
(
B̃
)q

.

Let µ be a limit point of (µε) in the weak-star topology as ε → 0. Since bε,n ≤ 2nε,
we have

µ
(
int
(
Q̃
))

≤ lim sup
ε→0

µε

(
int
(
Q̃
))

≤ cn2nτ(q)
∑

B̃∈Dn: B̃∼Q̃

ν
(
B̃
)q

, ∀ Q̃ ∈ Dn.

This finishes the proof of (36) by letting νq = µ.
To prove (37), let the measures µε,s, µε and µ are constructed as above. Let

x ∈ Rd and 0 < r < 1. Set r̃ = r
12
√

d
. Choose n ∈ N such that 2r̃ < 2−n ≤ 4r̃.

Then

B

(
x,

r

16
√

d

)
⊂ int (B(x, r̃)) ⊂ int

 ⋃
Q̃∈Dn,Q̃∼B(x,r̃)

Q̃

 . (41)

By (40), for each Q̃ ∈ Dn with Q̃ ∼ B(x, r̃), we have

lim sup
s↑τ(q)

µε,s

(
Q̃
)
≤ cnbε,n2nτ(q)

∑
B̃∼Q̃

ν
(
B̃
)q

.

It is easy to see that for all those B̃ ∈ Dn with B̃ ∼ Q̃, we have B̃ ⊂
B(x, 3

√
d · 2−n) ⊂ B(x, r). Since there are at most 3d different many B̃’s in Dn

such that B̃ ∼ Q̃, we have

lim sup
s↑τ(q)

µε,s

(
Q̃
)
≤ cnbε,n2nτ(q)3dν(B(x, r))q.

Summing over all Q̃ ∈ Dn with Q̃ ∼ B(x, r̃) (noting that there are at most 2d such
Q̃’s), we have

lim sup
s↑τ(q)

µε,s

 ⋃
Q̃∈Dn,Q̃∼B(x,r̃)

Q̃

 ≤ cnbε,n2nτ(q)6dν(B(x, r))q.

Therefore

µε

int

 ⋃
Q̃∈Dn,Q̃∼B(x,r̃)

Q̃

 ≤ cnbε,n2nτ(q)6dν(B(x, r))q.
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Hence by (41), we have

µ

(
B

(
x,

r

16
√

d

))
≤ µ(int (B(x, r̃)) ≤ µ

int

 ⋃
Q̃∈Dn,Q̃∼B(x,r̃)

Q̃


≤ lim sup

ε→0
µε

int

 ⋃
Q̃∈Dn,Q̃∼B(x,r̃)

Q̃


≤ cn2nτ(q)6dν(B(x, r))q,

From which (37) follows. 2

As an analogue of Proposition 4.3, we have

Proposition 4.4. Let ν be a compactly supported Borel probability measure on Rd.
Given q > 0, assume that there is a sequence (cn) of positive numbers such that
limn→∞

log cn

n = 0 and, for any n, m ∈ N, any Q̃ ∈ Dn,

∑
B̃∈Dn: B̃∼Q̃

 ∑
Q∈Dn+m: Q⊂B̃

ν(Q)q

 ≥ cnτm(ν, q)ν
(
Q̃
)q

. (42)

Then τ(q) = τ(ν, q) exists. Furthermore, there exists a Borel probability measure
νq on Rd such that for any n ∈ N and Q̃ ∈ Dn,∑

B̃∈Dn: B̃∼Q̃

νq

(
closure

(
B̃
))

≥ cn2nτ(q)ν(Q̃)q, (43)

where closure(B̃) denotes the closure of B̃. Moreover,

νq

(
B
(
x, 16

√
dr
))

≥ h(r)r−τ(q)ν(B(x, r)), x ∈ Rd, 0 < r <
1
4
, (44)

where h(r) = 6−d2−dq4−|τ(q)| inf{cn : n ≤ log2(r−1)}.

Proof. The proof of the proposition is much similar to that of Proposition 4.3. Here
we only point out the essential different point.

Fix an ε > 0 and let the measures (µε,s), s < τ(q) be defined identically to that
in the proof of Proposition 4.3. Instead of the estimates (38) and (39), by using
bε,n+m ≥ bε,m and (40), we have

∑
B̃∈Dn: B̃∼Q̃

µε,s

(
B̃
)

≥
∑

B̃∈Dn: B̃∼Q̃

Zε(s)−1
∞∑

m=1

bε,n+m2(n+m)s
∑

Q∈Dn+m: Q⊂B̃

ν(Q)q


≥ cn2nsν(Q̃)q.

Let µε be a limit point of (µε,s) in the weak-star topology as s ↑ τ(q). Then∑
B̃∈Dn: B̃∼Q̃

µε

(
closure

(
B̃
))

≥ lim inf
s↑τ(q)

∑
B̃∈Dn: B̃∼Q̃

µε,s

(
B̃
)
≥ cn2nτ(q)ν

(
Q̃
)q

.
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This finishes the proof of (43) by letting νq = µε.
Now we prove (44). Let x ∈ Rd and 0 < r < 1/4. Take n ∈ N such that

2r < 2−n ≤ 4r. Then
B(x, r) ⊂

⋃
Q̃∈Dn,Q̃∼B(x,r)

Q̃.

Since there are at most 2d different Q̃ ∈ Dn such that Q̃ ∼ B(x, r), by (14) we have

ν(B(x, r))q ≤

ν

 ⋃
Q̃∈Dn,Q̃∼B(x,r)

Q̃

q

≤ 2dq
∑

Q̃∈Dn,Q̃∼B(x,r)

ν
(
Q̃
)q

. (45)

However for each Q̃ ∈ Dn with Q̃ ∼ B(x, r), by (43), we have

ν
(
Q̃
)q

≤
(
cn2nτ(q)

)−1 ∑
B̃∈Dn,B̃∼Q̃

νq

(
closure

(
B̃
))

.

Observe that there are at most 3d many B̃ ∈ Dn so that B̃ ∼ Q̃, and for each such
B̃, B̃ ⊂ B(x, 16

√
dr). Hence we have

ν
(
Q̃
)q

≤
(
cn2nτ(q)

)−1

3dνq

(
B
(
x, 16

√
dr
))

,

Combining it with (45) yields

ν(B(x, r))q ≤
(
cn2nτ(q)

)−1

2dq6dνq

(
B
(
x, 16

√
dr
))

,

that is,

νq

(
B
(
x, 16

√
dr
))

≥ cn2nτ(q)2−dq6−dν(B(x, r))q.

This proves (44) by observing that 2nτ(q) = r−τ(q)(2nr)τ(q) ≥ r−τ(q)4−|τ(q)|. 2

As a direct corollary of Proposition 3.1, Proposition 4.3 and Proposition 4.4, we
have

Corollary 4.5. Let ν be any self-conformal measure on Rd. Then the limit τ(ν, q)
in (2) exists for all q > 0.

Theorem 4.6. Let ν be a compactly supported probability measure on Rd. Assume
that the condition of Proposition 4.3 is satisfied for ν for all q in an interval
(a, b) ⊂ R with a > 0. Then for any α = τ ′(ν, t) with t ∈ (a, b),

dimH Eν(α) = αt− τ(ν, t) = inf{αq − τ(ν, q) : q ∈ R}.

Proof. It follows directly from Proposition 4.3 and Proposition 2.1. 2

Proof of Theorem 1.2 . It follows directly from Proposition 3.1, Proposition 4.3
and Proposition 4.4. 2

Proof of Theorem 1.1 . It follows directly from Proposition 2.1 and the Gibbs
property (6) in Theorem 1.2. 2

Prepared using etds.cls



Self-conformal measures and the multifractal formalism 21

5. The asymptotically weak separation condition
Let {Si}`

i=1 be a C1-conformal IFS on a compact set X ⊂ Rd, and K the
corresponding self-conformal set. For n ∈ N, let Wn be defined as in (20).

Definition 5.1. The IFS {Si}`
i=1 is said to satisfy the asymptotically weak

separation condition (AWSC) if there exists a sequence (tn) of natural numbers
such that

lim
n→∞

1
n

log tn = 0

and for each n ∈ N and Q̃ ∈ Dn,

#{Su : u ∈ Wn,Ku ∩ Q̃ 6= ∅} ≤ tn. (46)

The AWSC is theoretically weaker than the weak separation condition (WSC)
introduced by Lau and Ngai [32] in which the (tn) is asked to be a constant
sequence. In the following we give a natural example of IFS which satisfies the
AWSC.

Definition 5.2. A real number β > 1 is said to be a Pisot number if it is an
algebraic integer whose algebraic conjugates all have modulus less than 1. Whilst
β > 1 is called a Salem number if it is an algebraic integer whose algebraic
conjugates all have modulus not greater than 1, with at least one of which on
the unit circle.

There are infinitely many Pisot numbers and Salem numbers. For example, for
each integer n ≥ 2, the largest positive root of xn − xn−1 − . . . − x − 1 is a Pisot
number, whilst the largest positive root of x2n − x2n−1 − . . . − x + 1 is a Salem
number. We refer to Salem’s book [53] for some interesting properties of Pisot and
Salem numbers.

Proposition 5.3. Let β > 1 be a Pisot number or Salem number. Then the IFS

{S1x = β−1x, S2x = β−1x + 1}

on R satisfies the AWSC.

To prove the above proposition, we need the following standard result about
algebraic numbers. For a proof, see [23, Lemma 1.51].

Lemma 5.4. Let α be an algebraic integer greater than 1. Let α1, α2, . . . , αs denotes
the algebraic conjugates of α and σ denotes the number of i such that |αi| = 1. If
A(x) is a polynomial of degree at most n with integer coefficients not exceeding M

in modulus for which A(α) 6= 0. Then

|A(α)| ≥
∏
|αi|6=1 ||αi| − 1|

(n + 1)σ
(∏

|αi|>1 |αi|
)n+1

Ms

.
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Proof of Proposition 5.3. If β is a Pisot number, then the IFS satisfies the WSC
(see [32, Example 2]), and thus it satisfies the AWSC. In the following we assume
that β is a Salem number. Let β1, β2, . . . , βs be the algebraic conjugates of β. Then
by Lemma 5.4, if A(x) is a polynomial of degree at most n with integer coefficients
not exceeding M in modulus for which A(β) 6= 0, then

|A(β)| ≥ c(n + 1)−sM−s, (47)

where c =
∏
|βi|6=1 ||βi| − 1|. A direct calculation shows that for any k ∈ N and

u = u1 . . . uk, v = v1 . . . vk ∈ {1, 2}k,

Su(0)− Sv(0) = β−(k−1)
k∑

i=1

(ui − vi)βk−i.

Thus by (47), if Su 6= Sv then

|Su(0)− Sv(0)| ≥ cβ−(k−1)k−s. (48)

Let K be the self-similar set generated by the IFS {S1, S2}. It is clear that K ⊆
[0, β

β−1 ] and diam(K) = β
β−1 . Now let n ∈ N. Then for any u = u1 . . . uk ∈ Wn, k

is the unique integer such that

β

β − 1
· β−k ≤ 2−n <

β

β − 1
· β−k+1.

It follows that βk ≤ 2n β2

β−1 and thus k ≤ n logβ 2 + 2− logβ (β − 1). Moreover for
any two u, v ∈ Wn with Su 6= Sv, by (48) we obtain

|Su(0)−Sv(0)| ≥ cβ−(k−1)k−s ≥ c2−n · β − 1
β

· (n logβ 2+2− logβ(β− 1))−s. (49)

Let Q̃ ∈ Dn. Then for any u ∈ Wn with Ku∩Q̃ 6= ∅, the point Su(0) has a distance
not exceeding 2−n from Q̃. Hence by (49), we have

#{Su : u ∈ Wn,Ku ∩ Q̃ 6= ∅} ≤ 3 · 2−n

c2−n · β−1
β · (n logβ 2 + 2− logβ(β − 1))−s

+ 1

≤ 3c−1 β

β − 1
· (n logβ 2 + 2− logβ(β − 1))s + 1

:= cn,

which deduces the AWSC since limn→∞
log cn

n = 0. 2

Remark 5.5. Proposition 5.3 can be extended slightly. Indeed, by a similar
argument one can show that if β > 1 is a Salem number, then an IFS {Si}`

i=1

on R satisfies the AWSC if each Si has the form

Six = ±β−mix + bi,

where mi ∈ N and bi ∈ Z[β]. Here Z[β] denotes the integral ring generated by β.
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Proposition 5.6. Let ν be a self-conformal measure on Rd generated by an IFS
{Si}`

i=1 which satisfies the asymptotically weak separation condition. Then for each
q > 0, there exists a sequence (cn) of positive numbers with limn→∞

log cn

n = 0 such
that for each n ∈ N and Q̃ ∈ Dn,∑

Q∈Dm+n: Q⊂Q̃

ν(Q)q ≤ cnτm(ν, q)
∑

B̃∈Dn: B̃∼Q̃

ν
(
B̃
)q

, (50)

and ∑
B̃∈Dn: B̃∼Q̃

 ∑
Q∈Dm+n: Q⊂B̃

ν(Q)q

 ≥ cnτm(ν, q)ν
(
Q̃
)q

. (51)

Proof. Let ν be the self-conformal measure generated by the IFS {Si}`
i=1 and a

probability weight (p1, . . . , p`). For any n ∈ N, let Wn be defined as in (20). Then
it follows from (3) that

ν =
∑

u∈Wn

puν ◦ S−1
u for all n ∈ N, (52)

where pu = pu1 · · · puk
for u = u1 . . . uk. For each n ∈ N, we define an equivalence

relation “≈” on Wn by setting u ≈ v if Su = Sv. For u ∈ Wn, let [u] denote the
equivalence class that contains u. In particular, we write

p[u] :=
∑
v∈[u]

pv, S[u] := Su and K[u] := Ku.

Then (52) can be rewritten as

ν =
∑

[u]∈Wn/≈

p[u]ν ◦ S−1
[u] for all n ∈ N. (53)

Let q > 0. By Proposition 3.3, there exists a sequence (dn) of positive numbers
with limn→∞

log dn

n = 0, such that for all m,n ∈ N and u ∈ Wn,

(dn)−1τm(ν, q) ≤
∑

Q∈Dm+n

ν(S−1
u Q)q ≤ dnτm(ν, q). (54)

We first prove (50). By (53), for each Q̃ ∈ Dn and each Q ∈ Dm+n with Q ⊂ Q̃,
we have

ν(Q) =
∑

[u]∈Wn/≈

p[u]ν
(
S−1

[u] (Q)
)

=
∑

[u]∈Wn/≈,K[u]∩Q̃6=∅

p[u]ν
(
S−1

[u] (Q)
)

.

Combining it with (14) yields

ν(Q)q =

 ∑
[u]∈Wn/≈,K[u]∩Q̃6=∅

p[u]ν
(
S−1

[u] (Q)
)

q

≤ tqn
∑

[u]∈Wn/≈,K[u]∩Q̃6=∅

pq
[u]ν

(
S−1

[u] (Q)
)q

,
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where (tn) is the corresponding sequence in Definition 5.1. Summing over Q ∈
Dm+n with Q ⊂ Q̃, and using (14) and (54), we obtain

∑
Q∈Dn+m,Q⊂Q̃

ν(Q)q ≤
∑

Q∈Dn+m,Q⊂Q̃

tqn
∑

[u]∈Wn/≈,K[u]∩Q̃6=∅

pq
[u]ν

(
S−1

[u] (Q)
)q


≤ tqn

∑
[u]∈Wn/≈,K[u]∩Q̃6=∅

 ∑
Q∈Dn+m

pq
[u]ν

(
S−1

[u] (Q)
)q


≤ dntqnτm(ν, q)

∑
[u]∈Wn/≈,K[u]∩Q̃6=∅

pq
[u]

≤ dntq+1
n τm(ν, q)

 ∑
[u]∈Wn/≈,K[u]∩Q̃6=∅

p[u]


q

. (55)

Since diam(Ku) ≤ 2−n for u ∈ Wn, Ku ∩ Q̃ 6= ∅ implies Ku ⊂
⋃

B̃∈Dn,B̃∼Q̃ B̃. We
have ∑

[u]∈Wn/≈,K[u]∩Q̃6=∅

p[u] =
∑

[u]∈Wn/≈,K[u]∩Q̃6=∅

p[u]ν

S−1
[u]

 ⋃
B̃∈Dn,B̃∼Q̃

B̃


≤

∑
[u]∈Wn/≈

p[u]ν

S−1
[u]

 ⋃
B̃∈Dn,B̃∼Q̃

B̃


= ν

 ⋃
B̃∈Dn,B̃∼Q̃

B̃

 =
∑

B̃∈Dn,B̃∼Q̃

ν(B̃). (56)

Thus by (14), ∑
[u]∈Wn/≈,K[u]∩Q̃6=∅

p[u]


q

≤

 ∑
B̃∈Dn,B̃∼Q̃

ν(B̃)

q

≤ 3dq
∑

B̃∈Dn,B̃∼Q̃

ν(B̃)q.

Combining this with (55), we have∑
Q∈Dn+m,Q⊂Q̃

ν(Q)q ≤ 3dqdntq+1
n τm(ν, q)

∑
B̃∈Dn: B̃∼Q̃

ν
(
B̃
)q

,

which proves (50).
To prove (51), let Q̃ ∈ Dn. Then for any Q ∈ Dn+m,

ν(Q) =
∑

[u]∈Wn/≈

p[u]ν
(
S−1

[u] (Q)
)
≥

∑
[u]∈Wn/≈,K[u]∩Q̃6=∅

p[u]ν
(
S−1

[u] (Q)
)

.

It follows from (46) and (14) that

ν(Q)q ≥ t−1
n

∑
[u]∈Wn/≈,K[u]∩Q̃6=∅

pq
[u]ν

(
S−1

[u] (Q)
)q

. (57)
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Now let u ∈ Wn such that Ku ∩ Q̃ 6= ∅. Then Ku ⊂
⋃

B̃∈Dn,B̃∼Q̃ B̃. It implies that

for any Q ∈ Dm+n, if Q ∩Ku 6= ∅ then Q ⊂
⋃

B̃∈Dn,B̃∼Q̃ B̃. Therefore∑
Q∈Dn+m

ν(S−1
u Q)q =

∑
Q∈Dn+m,Q∩Ku 6=∅

ν(S−1
u Q)q =

∑
Q∈Dm+n,Q⊂

⋃
B̃∈Dn,B̃∼Q̃ B̃

ν(S−1
u Q)q.

(58)
Thus summing over Q ∈ Dn+m, Q ⊂

⋃
B̃∈Dn,B̃∼Q̃ B̃ in (57) yields

∑
B̃∈Dn: B̃∼Q̃

 ∑
Q∈Dm+n: Q⊂B̃

ν(Q)q


=

∑
Q∈Dm+n,Q⊂

⋃
B̃∈Dn: B̃∼Q̃ B̃

ν(Q)q

≥ t−1
n

∑
Q∈Dm+n,Q⊂

⋃
B̃∈Dn: B̃∼Q̃ B̃

 ∑
[u]∈Wn/≈,K[u]∩Q̃6=∅

pq
[u]ν(S−1

[u] (Q))q


= t−1

n

∑
[u]∈Wn/≈,K[u]∩Q̃6=∅

 ∑
Q∈Dm+n,Q⊂

⋃
B̃∈Dn: B̃∼Q̃ B̃

pq
[u]ν(S−1

[u] (Q))q


= t−1

n

∑
[u]∈Wn/≈,K[u]∩Q̃6=∅

 ∑
Q∈Dm+n

pq
[u]ν(S−1

[u] (Q))q

 (by (58))

≥ d−1
n t−1

n τm(ν, q)
∑

[u]∈Wn/≈,K[u]∩Q̃6=∅

pq
[u] (by (54))

≥ d−1
n t−(q+1)

n τm(ν, q)

 ∑
[u]∈Wn/≈,K[u]∩Q̃6=∅

p[u]


q

≥ d−1
n t−(q+1)

n τm(ν, q)

 ∑
[u]∈Wn/≈,K[u]∩Q̃6=∅

p[u]ν(S−1
[u] Q̃)


q

= d−1
n t−(q+1)

n τm(ν, q)ν
(
Q̃
)q

.

This finishes the proof of (51). 2

The following theorem extends the multifractal result of Lau and Ngai [32] about
self-similar measures satisfying the WSC.

Theorem 5.7. Let ν be a self-conformal measure on Rd generated by a C1-
conformal IFS {Si}`

i=1 which satisfies the asymptotically weak separation condition.
Then for any α = τ ′(ν, t) with t > 0,

dimH Eν(α) = αt− τ(ν, t) = inf{αq − τ(ν, q) : q ∈ R}. (59)

Proof. The theorem follows directly from Proposition 5.6 and Theorem 4.6. 2
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